141

Formation of the Dinuclear Iron–Nitrosyl Complex $[Fe_2(SMe)_2(NO)_4]$ by Incorporation of SMe Groups from Methionine in Reactions with Iron(1) Salts and Nitrite

Anthony R. Butler, Christopher Glidewell* and Sheila M. Glidewell

Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST, UK

The dinuclear iron–nitrosyl complex $[Fe_2(SMe)_2(NO)_4]$ has been isolated from reactions of iron(\mathfrak{n}) salts and sodium nitrite with methionine, under reaction conditions relevant to food processing.

Sodium nitrite is a long-established food preservative, valuable particularly for preventing the growth of *Clostridium botulinum* in preserved foodstuffs. The isolation of the iron–sulfur nitrosyl complex [$Fe_2(SMe)_2(NO)_4$] from plant material (of uncertain taxonomic identity) after storage in water of moderately high nitrite content,¹ and the confirma-

tion² of this observation using parsley, *Petroselinum crispum*, has led to speculation³ on the biosynthetic origin of this complex, known to be a promoter of the tumorigenic properties of both *N*-nitrosamines and polycyclic aromatic hydrocarbons.^{1d,4,5}

The iron-sulfur clusters of redox proteins and their

 $R^1 = MeNH; R^2 = MeCO$

synthetic analogues both react readily with nitrite to yield iron-nitrosyl complexes.^{6,7} For the synthetic clusters, the product of the reaction with nitrite primary is $[Fe(NO)_2(SH)_2]^-$, which in a self-assembly reaction forms the tetranuclear product $[Fe_4S_3(NO)_7]^-$, isolable in yields of *ca*. 40%.⁷ The anion $[Fe_4S_3(NO)_7]^-$ itself reacts with electrophilic alkylating or arylating agents to give the dinuclear complexes [Fe₂(SR)₂(NO)₄]:⁸ hence reaction of nitrite with such preformed iron-sulfur clusters has been suggested as the initial step in the biological formation of [Fe₂(SMe)₂(NO)₄].³ However, we have subsequently demonstrated⁹ that preformed clusters are not necessary for the formation of $[Fe_4S_3(NO)_7]^-$: in the presence of iron(II) salts, nitrite will effect the incorporation into $[Fe_4S_3(NO)_7]^-$ of sulfur from a wide range of amino acids and their derivatives.

We now report direct formation of $[Fe_2(SMe)_2(NO)_4]$ by incorporation of the intact SMe fragment of methionine: in the presence of iron(II) sulfate and sodium nitrite, methionine yields $[Fe_2(SMe)_2(NO)_4]$, isolable by chromatography on silica, under a range of experimental conditions relevant to food processing.[†] The product was identified by a combination of Fourier transform IR,10 1H (including ASIS) and ¹³C NMR, and ¹⁵N NMR on the product [Fe₂(SMe)₂(¹⁵NO)₄] isolated from a reaction using 99% enriched Na[15NO2],11 and by mass spectrometry of material isolated both from normal methionine, 1a $[Fe_2(SMe)_2(NO)_4]$ and from $[Me^{-2}H_3]$ methionine 1b, $[Fe_2(SCD_3)_2(NO)_4]$. That the sulfur is derived from methionine, rather than from reduction of sulfate,¹² was confirmed by control experiments using iron(II) chloride instead of the sulfate: the yields of $[Fe_2(SMe)_2(NO)_4]$ were unchanged. Comparable yields of $[Fe_2(SMe)_2(NO)_4]$ were obtained from similar reactions of iron(11) salts, sodium nitrite and either methionine ethyl ester 1c or S-methylcysteine 1d.

[†] Autoclave at 118 °C for 20 min; isolated, purified, yield of $[Fe_2(SMe)_2(NO)_4]$ ca. 4% (based on equimolar methionine and iron(II) as limiting components, with nitrite in 20% molar excess): microwave 90 °C for 1 h, 650 W, trace only: reflux under N₂ for 2 h; isolated, purified yield ca. 10%, calculated as previously.

[‡] Compound **1a** yielded $[Fe_2(SMe)_2(NO)_4]$: IR[tetrahydrofuran (thf)], v (NO)/cm⁻¹ 1776s, 1751s (lit.,¹⁰ 1776s, 1751s); δ_H (CDCl₃), 2.83 (lit.,^{11a} 2.83); δ_H (²H₈ toluene), 2.17, 2.23 (lit.,^{11d} 2.16, 2.23); δ_C (CDCl₃) 27.5(q) [lit.,^{11b} 27.5(q)]; *m*/z, 326 M⁺, 296 (M - NO)⁺, 266 (M - 2NO)⁺, 236 (M - 3NO)⁺, 206 (M - 4NO)⁺, 191 (Fe₂S₂Me)⁺, 176 (Fe₂S₂)⁺.

Compound **1b** yielded [Fe₂(SCD₃)₂(NO)₄]: IR (thf), v (NO)/cm⁻¹ 1776s, 1751s; *m*/*z*, 332, 302, 272, 242, 212, 194, 176.

Although preformed iron-sulfur clusters are clearly not required for the formation of $[Fe_2(SR)_2(NO)_4]$ complexes, nevertheless we have observed that the tetranuclear anion $[Fe_4S_3(NO)_7]^-$ reacts with methionine to provide $[Fe_2(SMe)_2(NO)_4]$, although in this case the source of the sulfur in the dinuclear product is not yet proven.

The formation of tetranuclear $[Fe_4S_3(NO)_7]^-$ from cysteine and its derivatives⁹ and of dinuclear $[Fe_2(SMe)_2(NO)_4]$ from derivatives of methionine or S-methylcysteine requires cleavage of carbon–sulfur bonds. Ghadimi and Hill have recently shown¹³ that such C–S bond cleavage in cysteine derivatives is extremely easy under conditions similar to those employed here [see eqn. (1)]. A similar cleavage of methionine derivatives would yield MeSH, long known¹⁴ to provide $[Fe_2(SMe)_2(NO)_4]$ in the presence of iron(II) and either nitrite or NO.

It is of interest that in reactions of iron(11) salts with nitrite and ethionine **1e**, where two different C–S bond cleavage reactions are possible, the sole iron complex identified by IR, ¹H, ¹³C and ¹⁵N NMR, and mass spectrometry was the neutral dinculear $[Fe_2(SEt)_2(NO)_4]$.§

We thank the AFRC for financial support.

Received, 16th September 1991; Com. 1/04787F

References

- (a) G. H. Wang, W. X. Zhang and W. G. Chai, Acta Chim. Sinica, 1980, 38, 95; (b) G. H. Wang, W. X. Zhang and W. G. Chai, Adv. Mass Spectrom., 1980, 8B, 1369; (c) W. X. Zhang, M S. Xu and G. H. Wang, Cancer Res., 1983, 43b, 339; (d) M. X. Li and S. J. Cheng, Chin. Med. J., 1984, 97b, 311.
- 2 J. D. Baty, R. G. Willis, M. G. Burdon, A. R. Butler, C. Glidewell, I. L. Johnson and R. Massey, *Inorg. Chim. Acta*, 1987, **138**, 15.
- 3 A. R. Butler, C. Glidewell and M. H. Li, *Adv. Inorg. Chem.*, 1988, **32**, 335.
- 4 S. J. Cheng, M. Sala, M. H. Li, I. Courtois and I. Chouroulinkov, *Carcinogenesis*, 1981, **2**, 313.
- 5 S. Lu, P. Lin, F. Lu and Y. Wang, Zhonghua Zhonglin Zazhi, 1985, 7, 241; Chem. Abstr., 1986, 104, 63958e.
- 6 D. Reddy, J. R. Lancaster, Jr. and D. P. Cornforth, *Science*, 1983, **221**, 769.
- 7 A. R. Butler, C. Glidewell, A. R. Hyde and J. C. Walton, *Inorg. Chim. Acta*, 1985, **106**, L7.
- 8 C. Glidewell, R. J. Lambert, M. E. Harman and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 2685.
- 9 A. R. Butler, C. Glidewell and S. M. Glidewell, *Polyhedron*, 1990, **9**, 2399.
- 10 J. A. Crayston, C. Glidewell and R. J. Lambert, *Polyhedron*, 1990, **9**, 1741.
- (a) C. Glidewell and A. R. Hyde, *Polyhedron*, 1985, 4, 1155; (b)
 C. Glidewell and I. L. Johnson, *Chem. Scr.*, 1987, 27, 441; (c)
 A. R. Butler, C. Glidewell, A. R. Hyde and J. McGinnis, *Inorg. Chem.*, 1985, 24, 2931; (d) A. R. Butler, C. Glidewell, A. R. Hyde, J. McGinnis and J. E. Seymour, *Polyhedron*, 1983, 2, 1045.
- 12 A. R. Butler, C. Glidewell and S. M. Glidewell, *Thermochim.* Acta, 1986, **106**, 355.
- 13 M. Ghadimi and R. R. Hill, J. Chem. Soc., Chem. Commun., 1991, 903.
- 14 K. A. Hofmann and O. F. Wiede, Z. Anorg. Allg. Chem., 1895, 9, 295.

Compound le in the presence of Na[¹⁵NO₂] yielded [Fe₂(SEt)₂(¹⁵NO)₄]: IR (thf) v(¹⁵NO)/cm⁻¹ 1739s, 1714s [lit., (Nujol)^{11b} 1740s, 1716s]; $\delta_{\rm N}$ (CDCl₃) 20.9 (d, J 2.8 Hz), 26.5(s), 31.3 (d, J 2.8 Hz) [lit., (CD₂Cl₂)^{11c} 25.0 (d, J 3.0 Hz), 31.4(s), 36.1 (d, J 3.0 Hz)]; m/z 358, 327, 296, 268, 237, 209, 178, 177, 176.

Compound **1a** in the presence of Na[¹⁵NO₂] yielded [Fe₂-(SMe)₂(¹⁵NO)₄]: IR(thf), $v(^{15}NO)/cm^{-1}$ 1739s, 1714s [lit.; (Nujol),^{11b}1740s, 1716s]; δ_N ([²H₆]acetone) 26.1 (d, J 3.2 Hz), 32.7(s), 38.0(d, J 3.2 Hz) [lit., (CD₂Cl₂)^{11c} 23.1 (d, J 2.8 Hz), 30.5(s), 36.2(d, J 2.8 Hz)]; *m*/z, 330, 299, 268, 237, 206, 191, 176.