Formation of the Dinuclear Iron-Nitrosyl Complex [Fe₂(SMe)₂(NO)₄] by Incorporation of SMe Groups from Methionine in Reactions with Iron(ii) Salts and Nitrite

Anthony R. Butler, Christopher Glidewell* and Sheila M. Glidewell

Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST, UK

The dinuclear iron-nitrosyl complex $[Fe_2(SMe)_2(NO)_4]$ has been isolated from reactions of iron(ii) salts and sodium nitrite with methionine, under reaction conditions relevant to food processing.

able particularly for preventing the growth of *Clostridium* has led to speculation³ on the biosynthetic origin of this *botulinum* in preserved foodstuffs. The isolation of the complex, known to be a promoter of the tum *hotulinum* in preserved foodstuffs. The isolation of the complex, known to be a promoter of the tumorigenic iron-sulfur nitrosyl complex $[Fe_2(SMe)_2(NO)_4]$ from plant properties of both *N*-nitrosamines and polycyclic aromat material (of uncertain taxonomic identity) after storage in hydrocarbons.^{1d,4,5} water of moderately high nitrite content,¹ and the confirma-
The iron-sulfur clusters of redox proteins and their water of moderately high nitrite content,¹ and the confirma-

Sodium nitrite is a long-established food preservative, valu-
tion² of this observation using parsley, *Petroselinum crispum*, properties of both N -nitrosamines and polycyclic aromatic hydrocarbons.^{1d,4,5}

 R^1 = **MeNH**; R^2 = **MeCO**

synthetic analogues both react readily with nitrite to yield iron-nitrosyl complexes.6-7 For the synthetic clusters, the primary product of the reaction with nitrite is $[Fe(NO)₂(SH)₂]$, which in a self-assembly reaction forms the tetranuclear product $[Fe_4S_3(NO)_7]^-$, isolable in yields of *ca*. 40% ⁷ The anion $[Fe₄S₃(NO)₇]$ ⁻ itself reacts with electrophilic alkylating or arylating agents to give the dinuclear complexes $[Fe₂(SR)₂(NO)₄]$:⁸ hence reaction of nitrite with such preformed iron-sulfur clusters has been suggested as the initial step in the biological formation of $[Fe_2(SMe)_2(NO)_4]$.³ However, we have subsequently demonstrated⁹ that preformed clusters are not necessary for the formation of $[Fe_4S_3(NO)_7]$: in the presence of iron(II) salts, nitrite will effect the incorporation into $[Fe_4S_3(NO)_7]$ of sulfur from a wide range of amino acids and their derivatives.

We now report direct formation of $[Fe₂(SMe)₂(NO)₄]$ by incorporation of the intact SMe fragment of methionine: in the presence of iron (II) sulfate and sodium nitrite, methionine yields $[Fe₂(SMe)₂(NO)₄]$, isolable by chromatography on silica, under a range of experimental conditions relevant to food processing.[†] The product was identified by a combination of Fourier transform $IR,10~1H$ (including ASIS) and ¹³C NMR, and ¹⁵N NMR on the product $[Fe_2(SMe)_2({}^{15}NO)_4]$ isolated from a reaction using 99% enriched $Na[¹⁵NO₂]_{,11}$ and by mass spectrometry of material isolated both from normal methionine, **la** $[Fe_2(SMe)_2(NO)_4]$ and from $[Me^{-2}H_3]$ methionine **1b**, $[Fe_2(SCD_3)_2(NO)_4]$.# That the sulfur is derived from methionine, rather than from reduction of sulfate,¹² was confirmed by control experiments using iron(π) chloride instead of the sulfate: the yields of $[Fe_2(SMe)_2(NO)_4]$ were unchanged. Comparable yields of $[Fe_2(SMe)_2(NO)_4]$ were obtained from similar reactions of iron(n) salts, sodium nitrite and either methionine ethyl ester **lc** or S-methylcysteine **Id.**

t Autoclave at 118 "C for 20 min; isolated, purified, yield of [Fe₂(SMe)₂(NO)₄] *ca.* 4% (based on equimolar methionine and $iron(n)$ as limiting components, with nitrite in 20% molar excess): microwave 90 °C for 1 h, 650 W, trace only: reflux under N₂ for 2 h; isolated, purified yield *ca.* lo%, calculated as previously.

 \ddagger Compound 1a yielded [Fe₂(SMe)₂(NO)₄]: IR[tetrahydrofuran (thf)], v (NO)/cm⁻¹ 1776s, 1751s (lit.,¹⁰ 1776s, 1751s); δ_H (CDCl₃), 2.83 (lit.,^{11a} 2.83); δ_H (²H₈ toluene), 2.17, 2.23 (lit.,^{11d} 2.16, 2.23); δ_C (CDCl₃) 27.5(q) [lit.,^{11b} 27.5(q)]; *m*/z, 326 M⁺, 296 (M – NO)⁺, 266 (CDCl₃) 27.5(q) [lit.,^{11b} 27.5(q)]; *m/z*, 326 M + , 296 (M – NO) + , 266
(M – 2NO) + , 236 (M – 3NO) + , 206 (M – 4NO) + , 191 (Fe₂S₂Me) + . 176 (Fe₂S₂)⁺

Compound **1b** yielded $[Fe_2(SCD_3)_2(NO)_4]$: IR (thf), ν (NO)/cm⁻¹ 1776s, 1751s; *mlz,* 332, 302, 272, 242, 212, 194, 176.

Although preformed iron-sulfur clusters are clearly not required for the formation of $[Fe₂(SR)₂(NO)₄]$ complexes, nevertheless we have observed that the tetranuclear anion $[Fe_4S_3(NO)_7]$ ⁻ reacts with methionine to provide $[Fe_2$ - $(SMe)₂(NO)₄$, although in this case the source of the sulfur in the dinuclear product is not yet proven.

The formation of tetranuclear $[Fe₄S₃(NO)₇]$ from cysteine and its derivatives⁹ and of dinuclear $[Fe₂(SMe)₂(NO)₄]$ from derivatives of methionine or S-methylcysteine requires cleavage of carbon-sulfur bonds. Ghadimi and Hill have recently shown13 that such C-S bond clcavage in cysteine derivatives is extremely easy under conditions similar to those employed here [see eqn. (1)]. A similar cleavage of methionine derivatives would yield MeSH, long known14 to provide $[Fe₂(SMe)₂(NO)₄]$ in the presence of iron(II) and either nitrite or NO.

It is of interest that in reactions of iron(π) salts with nitrite and ethionine **le,** where two different **C-S** bond cleavage reactions are possible, the sole iron complex identified by IR, $1H$, $13C$ and $15N NMR$, and mass spectrometry was the neutral dinculear $[Fe_2(SEt)_2(NO)_4]$.

We thank the AFRC for financial support.

Received, 16th September 1991; Com. 1104787F

References

- 1 *(a)* G. H. Wang, W. X. Zhang and W. G. Chai, *Acta Chim. Sinica,* 1980,38,95; *(b)* G. H. Wang, W. X. Zhang and W. G. Chai, *Adv. Mass Spectrom.,* 1980, **8B,** 1369; *(c)* W. X. Zhang, M **S.** Xu and G. H. Wang, *Cancer Res.,* 1983, **43b,** 339; *(d)* M. X. Li and **S.** J. Cheng, *Chin. Med.* J., 1984, 97b, 311.
- 2 J. D. Baty, R. G. Willis, M. G. Burdon, A. R. Butler, C. Glidewell, I. L. Johnson and R. Massey, *Inorg. Chim. Acta,* 1987, 138, 15.
- 3 A. R. Butler, C. Glidewell and M. H. Li, *Adv. Inorg. Chem.*, 1988, 32, 335.
- 4 **S.** J. Cheng, M. Sala, M. H. Li, I. Courtois and I. Chouroulinkov, *Carcinogenesis,* 1981, 2, 313.
- 5 S. Lu, P. Lin, F. Lu and Y. Wang, *Zhonghuu Zhonglin Zazhi,* 1985, **7,** 241; *Chem. Abstr.,* 1986, **104,** 6395%.
- 6 D. Reddy, J. R. Lancaster, Jr. and D. P. Cornforth, *Science,* 1983, 221, 769.
- 7 **A.** R. Butler, C. Glidewell, **A.** R. Hyde and J. C. Walton, *Inorg. Chim. Acta,* 1985, **106,** L7.
- 8 C. Glidewell, R. J. Lambert, M. E. Harrnan and M. B. Hursthouse, *J. Chem. SOC., Dalton Trans.,* 1990, 2685.
- 9 A. R. Butler, C. Glidewell and **S.** M. Glidewell, *Polyhedron.* 1990, 9, 2399.
- 10 J. A. Crayston, C. Glidewell and R. J. Lamhert, *Polyhedron,* 1990, 9, 1741.
- 11 *(a)* C. Glidewell and A. R. Hyde, *Polyhedron,* 1985, **4,** 1155; *(h)* C. Glidewell and I. L. Johnson, *Chem. Scr.,* 1987. 27. 441; *(c)* A. R. Butler, C. Glidewell, **A.** R. Hyde and J. McGinnis, *Inorg. Chem.,* 1985, **24,** 2931; *(d)* A. R. Butler, C. Glidewell, **A.** R. Hyde, J. McGinnis and J. E. Seymour, *Polyhedron.* 1983,2.1045.
- 12 A. R. Butler, C. Glidewell and S. M. Glidewell, *Thermochim. Acta,* 1986, **106,** 355.
- 13 M. Ghadimi and R. R. Hill, *J. Chem. SOC., Chem. Commun.,* 1991, 903.
- 14 K. **A.** Hofmann and 0. F. Wiede, *2. Anorg. Allg. Chem.,* 1895.9, 295.

§ Compound 1e yielded [Fe₂(SEt)₂(NO)₄]: IR(thf) v (NO)/cm⁻¹ 1774s, 1749s (lit.,¹⁰ 1774s, 1749s); δ_H (CDCl₃) 1.53(t), 1.58(t), 3.05(q), 3.07(q) [lit.,^{11d} 1.53(t), 1.58(t), 3.07(q), 3.10(q)]; δ_C (CDCl₃) 19.1(q), 39.5(t), 40.1(t) [lit., 11d 19.1(q), 39.5(t), 40.2(t)]; m/z 354 M⁺. 324 (M – NO)⁺, 294(M – 2NO)⁺, 266 [Fe₂(NO)₂(SEt)(SH)]⁺, 236 $[Fe_2(NO)(SEt)(SH)]^+$, 208 $[Fe_2(NO)S_2H_2]^+$, 178 $(Fe_2S_2H_2)^+$, 177 $(Fe₂S₂H)⁺$, 176 $(Fe₂S₂)⁺$

Compound le in the presence of $Na[15NO₂]$ yielded $[Fe_2(SEt)_2({}^{15}NO)_4]$: IR (thf) $v({}^{15}NO)/cm^{-1}$ 1739s, 1714s [lit., $(Nujol)^{11b}$ 1740s, 1716s]; δ_N (CDCl₃) 20.9 (d, *J* 2.8 Hz), 26.5(s), 31.3 (d, \overline{J} 2.8 Hz) [lit., $(CD_2C1_2)^{11c}$ 25.0 (d, \overline{J} 3.0 Hz), 31.4(s), 36.1 (d, *J* 3.0 Hz)]; *mlz* 358, 327, 296, 268, 237, 209, 178, 177. i76.

Compound 1a in the presence of Na[¹⁵NO₂] yielded [Fe₂- $(SMe)_2$ (¹⁵NO)₄]: IR(thf), v(¹⁵NO)/cm⁻¹ 1739s, 1714s [lit.; (Nujol),^{11b} 1740s, 1716s]; δ_N ([²H₆]acetone) 26.1 (d, J 3.2 Hz), 32.7(s), 38.0(d, J 3.2 Hz) [lit., $(CD_2\tilde{C}I_2)^{11c}$ 23.1 (d, J 2.8 Hz), 30.5(s), 36.2(d, J 2.8 Hz)]; *mlz,* 330, 299, 268, 237, 206, 191, 176.